DEPARTMENT OF GENETICS & PLANT BREEDING

SCHOOL OF AGRICULTURAL SCIENCES & RURAL DEVELOPMENT

NAGALAND UNIVERSITY, MEDZIPHEMA

SYLLABUS & COURSE CONTENTS OF M. Sc. in Plant Breeding & Genetics

Sl.No.	Course No.	Course title	Credit hrs.
1.	*GPB-501	Principles of genetics	2+1
2.	*GPB-502	Principles of cytogenetics	2+1
3.	*GPB-503	Principles of plant breeding	2+1
4.	*GPB-504	Principles of quantitative genetics	2+1
5.	GPB-505	Mutagenesis and mutation breeding	2+1
6.	GPB-506	Population genetics	1+1
7.	GPB-507	Heterosis breeding	1+1
8.	*GPB-508	Cell biology and molecular genetics	2+1
9.	*GPB-509	Biotechnology for crop improvement	2+1
10.	GPB-510	Breeding for biotic and abiotic stress resistance	2+1
11.	GPB-511	Breeding cereals, forages and sugarcane	2+1
12.	GPB-512	Breeding legumes, oilseeds and fibre crops	2+1
13.	GPB-513	Breeding for quality traits	2+1
14.	GPB-514	Gene regulation and expression	2+0
15.	GPB-515	Maintenance breeding, concepts of variety release and seed	1+1
		production	
16.	GPB-516	Germplasm collection, exchange and quarantine	2+1
17.	GPB-517	Data bas management, evaluation and utilization of PGR	2+1
18.	GPB-591	Master's seminar	1+0
19.	GPB-599	Master's research	0+20

*Compulsory for Master's programme

PGS 503 INTELLECTUAL PROPERTY AND ITS MANAGEMENT IN AGRICULTURE (e-Course) 1+0

Objective

The main objective of this course is to equip students and stakeholders with knowledge of intellectual property rights (IPR) related protection systems, their significance and use of IPR as a tool for wealth and value creation in a knowledge-based economy.

Theory

Historical perspectives and need for the introduction of Intellectual Property Right regime; TRIPs and various provisions in TRIPS Agreement; Intellectual Property and Intellectual Property Rights (IPR), benefits of securing IPRs; Indian Legislations for the protection of various types of Intellectual Properties; Fundamentals of patents, copyrights, geographical indications, designs and layout, trade secrets and traditional knowledge, trademarks, protection of plant varieties and farmers' rights and bio-diversity protection; Protectable subject matters, protection in biotechnology, protection of other biological materials, ownership and period of protection; National Biodiversity protection initiatives; Convention on Biological Diversity; International Treaty on Plant Genetic Resources for Food and Agriculture; Licensing of technologies, Material transfer agreements, Research collaboration Agreement, License Agreement.

DEPARTMENT OF GENETICS AND PLANT BREEDING

M Sc (Ag) in Genetics & Plant Breeding

GPB 501 PRINCIPLES OF GENETICS

2+1

Theory UNIT I

Beginning of genetics; Cell structure and cell division; Early concepts of inheritance, Mendel's laws; Discussion on Mendel's paper, Chromosomal theory of inheritance.

UNIT II

Multiple alleles, Gene interactions. Sex determination, differentiation and sex-linkage, Sex-influenced and sex-limited traits; Linkage-detection, estimation; Recombination and genetic mapping in eukaryotes, Extra chromosomal inheritance.

UNIT III

Population - Mendelian population - Random mating population - Frequencies of genes and genotypes-Causes of change: Hardy-Weinberg equilibrium.

UNIT IV

Nature, structure and replication of the genetic material; Organization of DNA in chromosomes, Genetic code; Protein biosynthesis.

UNIT V

Genetic fine structure analysis, Allelic complementation, Split genes, Transposable genetic elements, Overlapping genes, Pseudogenes, Oncogenes, Gene families and clusters.

UNIT VI

Molecular mechanisms of mutation, repair and suppression; Bacterial plasmids, insertion (IS) and transposable (Tn) elements; Molecular chaperones and gene expression.

UNIT VII

Genomics and proteomics; Functional and pharmacogenomics; Metagenomics.

UNIT VIII

Methods of studying polymorphism at biochemical and DNA level; Transgenic bacteria and bioethics; Gene silencing; genetics of mitochondria and chloroplasts. **UNIT IX**

Concepts of Eugenics, Epigenetics, Genetic disorders and Behavioural genetics. **Practical**

Laboratory exercises in probability and chi-square; Demonstration of genetic principles using laboratory organisms; Chromosome mapping using three point test cross; Tetrad analysis; Induction and detection of mutations through genetic tests; DNA extraction and PCR amplification - Electrophoresis – basic principles and running of amplified DNA - Extraction of proteins and isozymes – use of Agrobacterium mediated method and Biolistic gun; practical demonstrations - Detection of transgenes in the exposed plant material; visit to transgenic glasshouse and learning the practical considerations.

GPB 502 PRINCIPLES OF CYTOGENETICS 2+1

Theory

UNIT I

Architecture of chromosome in prokaryotes and eukaryotes; Chromonemata, chromosome matrix, chromomeres, centromere, secondary constriction and telomere; Artificial chromosome construction and its uses; Special types of chromosomes.

UNIT II

Chromosomal theory of inheritance – Cell Cycle and cell division – mitosis and meiosis; Differences, significance and deviations – Synapsis, structure and function of synaptonemal complex and spindle apparatus, anaphase movement of chromosomes and crossing over-mechanisms and theories of crossing over-recombination models, cytological basis, - Variation in chromosome structure: Evolutionary significance -Introduction to techniques for karyotyping; Chromosome banding and painting -in situ hybridization and various applications.

UNIT III

Structural and Numerical variations of chromosomes and their implications -Symbols and terminologies for chromosome numbers -euploidy - haploids, diploids and polyploids ; Utilization of aneuploids in gene location - Variation in chromosome behaviour - somatic segregation and chimeras – endomitosis and somatic reduction ; Evolutionary significance of chromosomal aberrations - balanced lethals and chromosome complexes.

UNIT IV

Inter-varietal chromosome substitutions; Polyploidy and role of polyploids in crop breeding; Evolutionary advantages of autopolyploids vs allopolyploids – Role of aneuploids in basic and applied aspects of crop breeding, their maintenance and utilization in gene mapping and gene blocks transfer – Alien addition and substitution

lines – creation and utilization; Apomixis - Evolutionary and genetic problems in crops with apomixes.

UNIT V

Reversion of autopolyploids to diploids; Genome mapping in polyploids -Interspecific hybridization and allopolyploids; Synthesis of new crops (wheat, triticale and brassica) – Hybrids between species with same chromosome number, alien translocations - Hybrids between species with different chromosome number; Gene transfer using amphidiploids – Bridge species.

UNIT VI

Fertilization barriers in crop plants at pre-and postfertilization levels- In vitro techniques to overcome the fertilization barriers in crops; Chromosome manipulations in wide hybridization ; case studies – Production and use of haploids, dihaploids and doubled haploids in genetics and breeding.

Practical

Learning the cytogenetics laboratory, various chemicals to be used for fixation, dehydration, embedding, staining, cleaning etc. - Microscopy: various types of microscopes, -Observing sections of specimen using Electron microscope; Preparing specimen for observation -Fixative preparation and fixing specimen for light microscopy studies in cereals - Studies on the course of mitosis in wheat, pearl millet - Studies on the course of mitosis in onion and Aloe vera -Studies on the course of meiosis in cereals, millets and pulses - Studies on the course of meiosis in oilseeds and forage crops - Using micrometers and studying the pollen grain size in various crops -Various methods of staining and preparation of temporary and permanent slides - Pollen germination in vivo and in vitro; Microtomy and steps in microtomy; Agents employed for the induction of various ploidy levels; Solution preparation and application at seed, seedling level Identification of polyploids in different crops -Induction and identification of haploids; Anther culture and Ovule culture -Morphological observations on synthesized autopolyploids - Observations on Cmitosis, learning on the dynamics of spindle fibre assembly - Morphological observations on alloployploids - Morphological observations on aneuploids -Cytogenetic analysis of interspecific and intergeneric crosses - Maintenance of Cytogenetic stocks and their importance in crop breeding - Various ploidy levels due to somaclonal variation ; Polyploidy in ornamental crops. -Fluorescent in situ hybridization (FISH) - Genome in situ hybridization GISH.

GPB 503 PRINCIPLES OF PLANT BREEDING 2+1 Theory

UNIT I

History of Plant Breeding (Pre and post-Mendelian era); Objectives of plant breeding, characteristics improved by plant breeding; Patterns of Evolution in Crop Plants-Centres of Origin-biodiversity and its significance.

UNIT II

Genetic basis of breeding self- and cross -pollinated crops including mating systems and response to selection - nature of variability, components of variation; Heritability and genetic advance, genotype- environment interaction; General and specific combining ability; Types of gene actions and implications in plant breeding; Plant introduction and role of plant genetic resources in plant breeding.

UNIT III

Breeding methods in self pollinatedcrops ; Pure line theory, pure line selection and mass selection methods; Line breeding, pedigree, bulk, backcross, single seed

descent and multiline method; Population breeding in self-pollinated crops (diallel selective mating approach).

UNIT IV

Breeding methods in cross pollinated crops; Population breeding-mass selection and ear-to-row methods; S1 and S2 progeny testing, progeny selection schemes, recurrent selection schemes for intra and interpopulation improvement and development of synthetics and composites; Hybrid breeding - genetical and physiological basis of heterosis and inbreeding, production of inbreds, breeding approaches for improvement of inbreds, predicting hybrid performance; seed production of hybrid and their parent varieties/inbreds.

UNIT V

Breeding methods in asexually/clonally propagated crops, clonal selection apomixes, clonal selection.

UNIT VI

Self-incompatibility and male sterility in crop plants and their commercial exploitation; Concept of plant ideotype and its role in crop improvement; Transgressive breeding. **UNIT VII**

Special breeding techniques- Mutation breeding; Breeding for abiotic and biotic stresses.

UNIT VIII

Cultivar development- testing, release and notification, maintenance breeding, Participatory Plant Breeding, Plant breeders' rights and regulations for plant variety protection and farmers rights.

Practical

Floral biology in self- and cross-pollinated species, selfing and crossing techniques. Selection methods in segregating populations and evaluation of breeding material; Analysis of variance (ANOVA); Estimation of heritability and genetic advance; Maintenance of experimental records; Learning techniques in hybrid seed production using male-sterility in field crops.

GPB 504 PRINCIPLES OF QUANTITATIVE GENETICS 2+1 Theory UNIT I

Mendelian traits vs polygenic traits - nature of quantitative traits and its inheritance -Multiple factor hypothesis - analysis of continuous variation; Variations associated with polygenic traits - phenotypic, genotypic and environmental - non-allelic interactions; Nature of gene action - additive, dominance, epistatic and linkage effects.

UNIT II

Principles of Anaylis of Variance (ANOVA) - Expected variance components, random and fixed models; MANOVA, biplot analysis; Comparison of means and variances for significance.

UNIT III

Designs for plant breeding experiments – principles and applications; Genetic diversity analysis – metroglyph, cluster and D2 analyses - Association analysis - phenotypic and genotypic correlations; Path analysis and Parent - progeny regression analysis; Discriminant function and principal component analyses; Selection indices - selection of parents; Simultaneous selection models- concepts of selection - heritability and genetic advance.

UNIT IV

Generation mean analysis; Mating designs- Diallel, partial diallel, line x tester analysis, NCDs and TTC; Concepts of combining ability and gene action; Analysis of genotype x environment interaction - adaptability and stability; Models for GxE analysis and stability parameters; AMMI analysis – principles and interpretation.

UNIT V

QTL mapping; Strategies for QTL mapping - desired populations for QTL mapping - statistical methods in QTL mapping - QTL mapping in Genetic analysis; Marker assisted selection (MAS) - Approaches to apply MAS in Plant breeding - selection based on marker - simultaneous selection based on marker and phenotype - factors influencing MAS.

Practical

Problems on multiple factors inheritance - Partitioning of variance - Estimation of heritability and genetic advance - Covariance analysis - Metroglyph analysis - D2 analysis - Grouping of clusters and interpretation - Cluster analysis - Construction of cluster diagrams and dendrograms - interpretation - Correlation analysis - Path analysis - Parent-progeny regression analysis - Diallel analysis: Griffing's methods I and II - Diallel analysis: Hayman's graphical approach - Diallel analysis: interpretation of results - NCD and their interpretations - Line x tester analysis and interpretation of results -Estimation of heterosis : standard, mid-parental and betterparental heterosis - Estimation of inbreeding depression - Generation mean analysis: Analytical part and Interpretation –Estimation of different types of gene actions. Partitioning of phenotypic variance and co-variance into components due to genotypes, environment and genotype x environment interactions - Construction of saturated linkage maps and QTL mapping - Strategies for QTL mapping; statistical methods in QTL mapping; Phenotype and Marker linkage studies - Working out efficiency of selection methods in different populations and interpretation, Biparental mating, Triallel analysis, Quadriallel analysis and Triple Test Cross (TTC) - use of software in analysis and result interpretation. Advanced biometrical models for combining ability analysis, Models in stability analysis Additive Main Effect and Multiplicative Interaction (AMMI) model - Principal Component Analysis model -Additive and multiplicative model - Shifted multiplicative model - Analysis and selection of genotypes - Methods and steps to select the best model - Selection systems - Biplots and mapping genotypes.

GPB 505 MUTAGENESIS AND MUTATION BREEDING 1+1 Theory

UNIT I

Mutation and its history - Nature and classification of mutations: spontaneous and induced mutations, micro and macro mutations, pre and post adaptive mutations - Detection of mutations in lower and higher organisms – paramutations.

UNIT II

Mutagenic agents: physical — Radiation types and sources: Ionising and nonionizing radiations viz., X rays, Gamma rays, ,Alpha and ß particles, protons, neutrons and UV rays - Radiobiology: mechanism of action of various radiations (photoelectric absorption, Compton scattering and pair production) and their biological effects –RBE and LET relationships.

UNIT III

Effect of mutations on DNA - Repair mechanisms operating at DNA, chromosome, cell and organism level to counteract the mutation effects Dosimetry -Objects and

methods of treatment - Factors influencing mutation: dose rate, acute vs chronic irradiation, recurrent irradiation, enhancement of thermal neutron effects - Radiation sensitivity and modifying factors: External and internal sources- Oxygen, water content, temperature and nuclear volume.

UNIT IV

Chemical mutagens- Classification - Base analogues, antibiotics, alkylating agents, acridine dyes and other mutagens: their properties and mode of action - Dose determination and factors influencing chemical mutagenesis Treatment methods using physical and chemical mutagens – Combination treatments; Other causes of mutation -direct and indirect action, comparative evaluation of physical and chemical mutagens.

UNITV

Observing mutagen effects in M1 generation: plant injury, lethality, sterility, chimeras etc., - Observing mutagen effects in M2 generation - Estimation of mutagenic efficiency and effectiveness – spectrum of chlorophyll and viable mutations -- Mutations in traits with continuous variation.

UNIT VI

Factors influencing the mutant spectrum: genotype, type of mutagen and dose, pleiotropy and linkage etc. - Individual plant-based mutation analysis and working out effectiveness and efficiency in M3 generation - Comparative evaluation of physical and chemical mutagens for creation of variability in the same species – Case studies.

UNIT VII

Use of mutagens in creating oligogenic and polygenic variations – Case studies -In vitro mutagenesis – callus and pollen irradiation; Handling of segregating generations and selection procedures; Validation of mutants; Mutation breeding for various traits (disease resistance, insect resistance, quality improvement,etc) in different crops- Procedures for micro- mutations breeding/polygenic mutations-Achievements of mutation breeding-varieties released across the world- Problems associated with mutation breeding.

UNIT VIII

Use of mutagens in genomics, allele mining, TILLING.

Practical

Learning the precautions on handling of mutagens; Dosimetry - Studies of different mutagenic agents: Physical mutagens - Studies of different mutagenic agents: Chemical mutagens - Learning on Radioactivity – Production of source and isotopes at BRIT, Trombay - Learning about gamma chamber; Radiation hazards - Monitoring – safety regulations and safe transportation of radioisotopes -Visit to radio isotope laboratory ; learning on safe disposal of radioisotopes - Hazards due to chemical mutagens - Treating the plant propagules at different doses of physical and chemical mutagens - Learning combined mutagenic treatments; Raising the crop for observation - Mutagenic effectiveness and efficiency; Calculating the same from earlier literature - Study of M1 generation – Parameters to be observed; Study of M2 generation – Parameters to be observed; Mutation breeding in cereals and pulses – Achievements made and an analysis - Mutation breeding in oilseeds and cotton – Achievements and opportunities - Mutation breeding in forage crops and vegetatively propagated crops; Procedure for detection of mutations for polygenic traits in M2 and M3 generations.

GPB 506 POPULATION GENETICS

Theory

UNIT I

Population - Properties of population - Mendelian population – Genetic constitution of a population through time, space, age structure etc. Mating systems - Random mating population - Frequencies of genes and genotypes - Causes of change: population size, differences in fertility and viability, migration and mutation.

UNIT II

Hardy-Weinberg equilibrium - Hardy-Weinberg law - Proof – Applications of the Hardy-Weinberg law - Test of Hardy-Weinberg equilibrium – Mating frequencies - Non-dominance - Codominance - Snyder's ratio, importance and its effect over random mating in succeeding generations.

UNIT III

Multiple alleles - More than one locus - Sex linked genes; Use of gene and genotypic frequencies evaluation in field population level; Interpretations - Changes of gene frequency - Migration – Mutation - Recurrent and nonrecurrent - Selection - Balance between selection and mutation – Selection favouring heterozygotes - Overdominance for fitness.

UNIT IV

Non random mating: selfing –inbreeding coefficient - panmictic index –sibmating - Assortative mating and disassortative mating – Pedigree populations and close inbreeding - Estimation of selection - Estimation of disequilibrium - Estimation of linkage - Correlation between relatives and estimation of F; Effect of inbreeding and sibbing in cross pollinated crops.

UNIT V

Gene substitution and average effects; Breeding value- Genetic drift; Genetic slippage, Co-adapted gene complexes; Homoeostasis- Adaptative organization of gene pools, Polymorphism- Balanced and Non-balanced polymorphism, heterozygous advantage- Survival of recessive and deleterious alleles in populations.

Practical

Genetic exercise on probability; Estimation of gene frequencies; Exercises on factors affecting gene frequencies; Estimation of average affect of gene substitution and breeding value; Exercises on inbreeding and linkage disequilibrium- Cavalli's joint scaling test; Exercises of different mating designs; Estimation of different population parameters from experimental data; Measurement of genotype-environment interaction; Genetic divergence.

GPB 507 HETEROSIS BREEDING 2+1

Theory

UNIT I

Historical aspect of heterosis - Nomenclature and definitions of heterosis - Heterosis in natural population and inbred population; Evolutionary aspects -Genetic consequences of selfing and crossing in self-and cross-pollinated and asexually propagated crops crops.

UNIT II

Pre Mendelian and Post-Mendelian ideas -Genetic theories of heterosis – Physiological, Biochemical and molecular factors underlining heterosis; theories and their estimation; - Evolutionary concepts of heterosis.

UNIT III

Prediction of heterosis from various crosses- Inbreeding depression, frequency of inbreeding and residual heterosis in F2 and segregating populations, importance of inbreeding in exploitation of heterosis – case studies. - Relationship between genetic distance and expression of heterosis – case studies; Divergence and Genetic Distance analyses-morphological and molecular genetic distance in predicting heterosis, Development of heterotic pools in germplasm/genetic stocks and inbreds, their improvement for increasing heterosis.

UNIT IV

Types of male sterility and use in heterosis breeding; Maintenance, transfer and restoration of different types of male sterility; Use of self- incompatibility in development of hybrids; Hybrid seed production system: 3-line, 2-line and 1-line system; Development of inbreds and parental lines- A, B and R lines – functional male sterility; Commercial exploitation of heterosis- maintenance breeding of parental lines in hybrids.

UNIT V

Fixation of heterosis in self, cross and often cross-pollinated crops, asexually/clonally propagated crops; Male sterile line creation and diversification in self-pollinated, cross pollinated and asexually propagated crops; problems and prospects; Apomixis in fixing heterosis-concept of single line hybrid.

UNIT VI

Organellar heterosis and complementation - Creation of male sterility through genetic engineering and its exploitation in heterosis.

UNIT VII

Heterosis breeding in wheat, rice, cotton, maize, pearl millet, sorghum and oilseed crops.

Practical

Selection indices and selection differential – Calculations and interpretations - Male sterile line characterization in millets; Using morphological descriptors; Restorer line identification and diversification of male sterile sources - Male sterile line creation in dicots comprising oilseeds, pulses and cotton ; problems in creation of CGMS system; Ways of overcoming them - Male sterile line creation, diversification and restoration in forage crops; Understanding the difficulties in breeding apomicts; Estimation of heterotic parameters in self, cross and asexually propagated crops - Estimation from the various models for heterosis parameters -Hybrid seed production in field crops – an account on the released hybrids; their potential; Problems and ways of overcoming it; hybrid breeding at National and International level; Opportunities ahead.

GPB 508 CELL BIOLOGY AND MOLECULAR GENETICS 2+1

Theory

UNIT I

Ultrastructure of the cell; Differences between eukaryotic and prokaryotic cells, macromolecules; Structure and function of cell wall, nuclear membrane and plasma membrane; Cellular Organelles – nucleus, plastidschloro/chromoplast, mitochondria endoplasmic reticulum, Golgi complex, lysosomes, peroxisomes.

UNIT II

Bioenergetics; Ultrastructure and function of mitochondria and biological membranes; Chloroplast and other photosynthetic organelles; Interphase nucleus-Structure and chemical composition; Cell division and physiology of cell division.

UNIT III

Historical background of molecular genetics; Genetic material in organisms; Structure and properties of nucleic acid, DNA transcription and its regulation – Transcription factors and their role; Genetic code, regulation of protein synthesis in prokaryotes and eukaryotes – ribosomes, t-RNAs and translational factors.

UNIT IV

Transposable elements; Mechanisms of recombination in prokaryote; DNA organization in eukaryotic chromosomes – DNA content variation, types of DNA sequences – Unique and repetitive sequences; organelle genomes; Gene amplification and its significance; Proteomics and protein-protein interaction; Signal transduction; Genes in development; Cancer and cell aging.

Practical

Morphological and Gram staining of natural bacteria; Cultivation of bacteria in synthetic medium; Determination of growth rate and doubling time of bacterial cells in culture; Demonstration of bacteriophage by plaque assay method; Determination of soluble protein content in a bacterial culture. Isolation, purification and raising clonal population of a bacterium; Biological assay of bacteriophage and determination of phage population in lysate; Study of lytic cycle of bacteriophage by one step growth experiment; determination of latent period and burst size of phages per cell; Quantitative estimation of DNA, RNA and protein in an organism; Numericals: problems and assignments.

GPB 509 BIOTECHNOLOGY FOR CROP IMPROVEMENT 2+1

Theory

UNIT Í

Biotechnology and its relevance in agriculture; Definitions, terminologies and scope in plant breeding.

UNIT II

Tissue culture- History, callus, suspension cultures, cloning; Regeneration; Somatic embryogenesis; Anther culture; somatic hybridization techniques; Meristem, ovary and embryo culture; cryopreservation.

UNIT III

Techniques of DNA isolation, quantification and analysis; Genotyping; Sequencing techniques; Vectors, vector preparation and cloning, Biochemical and Molecular markers: morphological, biochemical and DNA-based markers (RFLP, RAPD, AFLP, SSR,SNPs, ESTs etc.), mapping populations (F2s, back crosses, RILs, NILs and DH)

UNIT IV

Molecular mapping and tagging of agronomically important traits. Statistical tools in marker analysis, Robotics; Marker-assisted selection for qualitative and quantitative traits; QTLs analysis in crop plants, Gene pyramiding.

UNIT V

Marker assisted selection and molecular breeding; Genomics and genoinformatics for crop improvement; Integrating functional genomics information on agronomically/economically important traits in plant breeding; Marker-assisted backcross breeding for rapid introgression, Generation of EDVs.

UNIT VI

Recombinant DNA technology, transgenes, method of transformation, selectable markers and clean transformation techniques, vector-mediated gene transfer,

physical methods of gene transfer. Production of transgenic plants in various field crops: cotton, wheat, maize, rice, soybean, oilseeds, sugarcane etc. Commercial releases.

UNIT VII

Biotechnology applications in male sterility/hybrid breeding, molecular farming.

UNIT VIII

MOs and related issues (risk and regulations); GMO; International regulations, biosafety issues of GMOs; Regulatory procedures in major countries including India, ethical, legal and social issues; Intellectual property rights

UNIT IX

Bioinformatics & Bioinformatics tools.

UNIT X

Nanotechnology and its applications in crop improvement programmes.

Practical

Requirements for plant tissue culture laboratory-Techniques in plant tissue culture -Media components and media preparation -Aseptic manipulation of various explants ; observations on the contaminants occurring in media – interpretations - Inoculation of explants; Callus induction and plant regeneration -Plant regeneration; Standardizing the protocols for regeneration; Hardening of regenerated plants; Establishing a greenhouse and hardening procedures - Visit to commercial micropropagation unit. Transformation using Agrobacterium strains, GUS assay in transformed cells / tissues. DNA isolation, DNA purity and quantification tests, gel electrophoresis of proteins and isozymes, PCR-based DNA markers, gel scoring and data analysis for tagging and phylogenetic relationship, construction of genetic linkage maps using computer software.

GPB 510 BREEDING FOR BIOTIC AND ABIOTIC STRESS RESISTANCE 2+1

Theory

UNIT I Importance of plant breeding with special reference to biotic and abiotic stress resistance; Classification of biotic stresses – major pests and diseases of economically important crops - Concepts in insect and pathogen resistance; Analysis and inheritance of resistance variation; Host defence responses to pathogen invasions- Biochemical and molecular mechanisms; Acquired and induced immunity and systemic acquired resistance (SAR); Host-pathogen interaction, gene-for-gene hypothesis, molecular evidence for its operation and exceptions; Concept of signal

transduction and other host-defense mechanisms against viruses and bacteria.

Types and genetic mechanisms of resistance to biotic stresses –Horizontal and vertical resistance in crop plants. Quantitative resistance/Adult plant resistance and Slow rusting resistance -Classical and molecular breeding methods - Measuring plant resistance using plant fitness; Behavioural, physiological and insect gain studies.

UNIT III

Phenotypic screening methods for major pests and diseases; Recording of observations; Correlating the observations using marker data – Gene pyramiding methods and their implications.

UNIT IV

Classification of abiotic stresses -Stress inducing factors –moisture stress/drought and water logging & submergence; Acidity, salinity/alkalinity/sodicity; High/low temperature, wind, etc. Stress due to soil factors and mineral toxicity; Physiological and Phenological responses; Emphasis of abiotic stresses in developing breeding methodologies.

UNIT V

Genetics of abiotic stress resistance; Genes and genomics in breeding cultivars suitable to low water regimes and water logging & submergence, high and low/freezing temperatures; Utilizing MAS procedures for identifying resistant types in important crops like rice, sorghum, wheat, cotton etc; Breeding for resistance to stresses caused by toxicity, deficiency and pollutants/contaminants in soil, water and environment.

UNIT VI

Exploitation of wild relatives as a source of resistance to biotic and abiotic factors in major field crops - Transgenics in management of biotic and abiotic stresses, use of toxins, protease inhibitors, lectins, chitinases and Bt for diseases and insect pest management- Achievements.

Practical

Phenotypic screening techniques for sucking pests and chewing pests – Traits to be observed at plant and insect level - Phenotypic screening techniques for nematodes and borers; Ways of combating them; Breeding strategies - Weeds – ecological, environmental impacts on the crops; Breeding for herbicide resistance - Evaluating the available populations like RIL, NIL etc. for pest resistance; Use of standard MAS procedures - Phenotypic screening methods for diseases caused by fungi and bacteria; Symptoms and data recording; use of MAS procedures - Screening forage crops for resistance to sewage water and tannery effluents; Quality parameters evaluation - Screening crops for drought and flood resistance; factors to be considered and breeding strategies - Screening varieties of major crops for acidity and alkalinity- their effects and breeding strategies; Understanding the climatological parameters and predisposal of biotic and abiotic stress factors- ways of combating them.

GPB 511 BREEDING CEREALS, FORAGES AND SUGARCANE 2+1 Theory

UNIT I

Rice: Evolution and distribution of species and forms - wild relatives and germplasm; Genetics – cytogenetics and genome relationship – Breeding objectives- yield, quality characters, biotic and abiotic stress resistance etc. – Hybrid rice breedingpotential and outcome - Aerobic rice, its implications and drought resistance breeding.

UNIT II

Wheat: Evolution and distribution of species and forms - wild relatives and germplasm; cytogenetics and genome relationship; Breeding objectives- yield, quality characters, biotic and abiotic stress resistance, exploitation of heterosis etc;

UNIT III

Maize: Evolution and distribution of species and forms - wild relatives and germplasm; Cytogenetics and genome relationship; Breeding objectives: yield, quality characters, biotic and abiotic stress resistance etc - QPM and Bt maize –

strategies and implications - Heterosis breeding attempts taken in Sorghum, Pearl Millet and Maize; Minor millets: Evolution and distribution of species and forms - wild relatives and germplasm; Cytogenetics and genome relationship - Minor millets: breeding objectives- yield, quality characters, biotic and abiotic stress resistance etc. **UNIT IV**

Sugarcane: Evolution and distribution of species and forms - wild relatives and germplasm; Cytogenetics and genome relationship – Breeding objectives- yield, quality characters, biotic and abiotic stress resistance etc Forage grasses: Evolution and distribution of species and forms – Wild relatives and germplasm; Cytogenetics and genome relationship; Breeding objectives- yield, quality characters and palatability studies; Biotic and abiotic stress resistance etc., synthetics, composites and apomixes.

Forage legumes: Evolution and distribution of species and forms; Wild relatives and germplasm; Cytogenetics and genome relationship; Breeding objectives- yield, quality characters, biotic and abiotic stress resistance etc Tree fodders: Evolution and distribution of species and forms; Wild relatives and germplasm; Cytogenetics and genome relationship; Breeding objectives- yield, quality characters, biotic and abiotic stress resistance etc, palatability studies.

UNIT VI

Distinguishing features of popular released varieties in Rice and Sorghum Wheat, Pearl millet, Maize and other millets -Sugarcane, forage grasses and legumes and their application to DUS testing - Maintenance of seed purity - Nucleus and Breeder Seed Production.

Practical

Floral biology – emasculation - pollination techniques ; Study of range of variation for yield and yield components – Study of segregating populations and their evaluation - Trait based screening for stress resistance in crops of importance– Use of descriptors for cataloguing Germplasm maintenance; learning on the Standard Evaluation System (SES) and descriptors; Use of software for database management and retrieval.Laboratory analysis of forage crops for crude protein, digestibility percent and other quality attributes; Visit to animal feed producing factories, learning the practice of value addition; visiting the animal husbandry unit and learning the animal experiments related with palatability and digestibility of fodder.

GPB 512 BREEDING LEGUMES, OILSEEDSAND FIBRE CROPS 2+1 Theory

UNIT I

Frenchbean: Evolution and distribution of species and forms; Wild relatives and germplasm; Genetics, cytogenetics and genome relationship; Morphological and molecular descriptors used for differentiating the accessions; Breeding objectivesyield, quality characters, biotic and abiotic stress etc - Hybrid technology.

UNIT II

Other pulses: Greengram, pigeon pea, fieldpea, ricebean, cowpea, lablab, mothbean: Evolution, cytogenetics and genome relationship; Learning the descriptors; Breeding objectives-yield, quality characters, biotic and abiotic stress etc; Interspecific crosses attempted and its implications, reasons for failure, ways of overcoming them.

UNIT III

Rapeseed and Mustard: Breeding objectives, utilization of wild relatives for yield and quality improvement, biotic and abiotic stress etc; Oil quality – characteristics in different oils; Evolution and distribution of species and forms; Wild relatives and germplasm; Genetics, cytogenetics and genome relationship.

UNIT IV

Soybean: Breeding objectives, utilization of wild relatives for yield and quality improvement, biotic and abiotic stress etc. - Oil quality – characteristics; Evolution and distribution of species and forms; Wild relatives and germplasm; Genetics, cytogenetics and genome relationship.

UNIT V

Other oilseed crops: Sesame, niger: Evolution and distribution of species and forms; Wild relatives and germplasm; Cytogenetics and genome relationship; breeding objectives- yield, quality characters, biotic and abiotic stress;.

UNIT VI

Castor: Evolution and distribution of species and forms; Wild relatives and germplasm; Cytogenetics and genome relationship, breeding objectives- yield, quality characters, biotic and abiotic stress etc - Hybrid breeding in castor – opportunities, constraints and achievements.

UNIT VII

Cotton: Evolution of cotton; Breeding objectives- yield, quality characters, biotic and abiotic stress etc; Development and maintenance of male sterile lines – Hybrid development and seed production – Scenario of Bt cottons, evaluation procedures for Bt cotton. Jute: Evolution and distribution of species and forms; Wild relatives and germplasm; Cytogenetics and genome relationship; breeding objectives- yield, quality characters, biotic and abiotic stress etc;

UNIT VIII

Distinguishing features of the released varieties in pulses, oilseeds and cotton; Maintenance of seed purity and seed production.

Practical

Use of descriptors for cataloguing - Floral biology - emasculation - pollination techniques; Study of range of variation for yield and yield components - Study of segregating populations in Redgram, Greengram, and other pulse crops. Use of descriptors for cataloguing - Floral biology, emasculation, pollination techniques of oilseed crops like Sesame, and Castor, Cotton: Use of descriptors for cataloguing -Floral biology - Learning on the crosses between different species - Cotton: Study of range of variation for yield and yield components - Study of segregating populations evaluation -Trait based screening for stress resistance - Cotton fibre quality evaluation - conventional and modern approaches; analysing the lint samples of different species, interspecific and interracial derivatives for fibre quality and interpretation -Development and maintenance of male sterile lines Evaluation of cotton cultures of different species for insect and disease resistance - Learning the mechanisms of resistance, quantifying the resistance using various parameters; Evaluating the germplasm of cotton for yield, quality and resistance parameters learning the procedures on development of Bt cotton - Visit to Cotton Technology Laboratory and Spinning Mills – Learning on cotton yarn production, its quality evaluation and uses.

GPB 513 BREEDING FOR QUALITY TRAITS Theory

UNIT I

Developmental biochemistry and genetics of carbohydrates, proteins, fats, vitamins, amino acids and anti-nutritional factors - Nutritional improvement - A human perspective - Breeding for grain quality parameters in rice and its analysis - Golden rice and aromatic rice – Breeding strategies, achievements and application in Indian context - Molecular basis of quality traits and their manipulation in rice - Post harvest manipulation for quality improvement.

UNIT II

Breeding for baking qualities in wheat; Characters to be considered and breeding strategies - Molecular and cytogenetic manipulation for quality improvement in wheat - Breeding for quality improvement in barley and oats.

UNIT III

Breeding for quality improvement in Sorghum and pearl millet; Quality protein maize – Concept and breeding strategies – Breeding for quality improvement in forage crops - Genetic resource management for sustaining nutritive quality in crops.

UNIT IV

Breeding for quality in pulses - Breeding for quality in groundnut, sesame, sunflower and minor oilseeds – Molecular basis of fat formation and manipulation to achieve more PUFA in oil crops; Genetic manipulation for quality improvement in cotton.

UNIT V

Genetic engineering protocols for quality improvement – Achievements made - Value addition in crops; Classification and importance – Nutritional genomics and Second generation transgenics.

Practical

Grain quality evaluation in rice; Correlating ageing and quality improvement in rice -Quality analysis in millets; Estimation of antinutritional factors like tannins in different varieties/hybrids; A comparison - Quality parameters evaluation in wheat; Quality parameters evaluation in pulses - Quality parameters evaluation in oilseeds; Value addition in crop plants ; Post harvest processing of major field crops; Quality improvement in crops through tissue culture techniques; Evaluating the available populations like RIL, NIL etc. for quality improvement using MAS procedures.

GPB 514 GENE REGULATION AND EXPRESSION 2+0

Theory UNIT I

Introduction: Gene regulation-purpose; Process and mechanisms in prokaryotes and eukaryotes; Levels of gene controls.

UNIT

Coordinated genetic regulation-examples- Anthocyanin and gene families and maize; Genetic and molecular basis depending on tissue specificity.

UNIT III

Gene expression-Transposons in plant gene expression, cloning-transposon tagging; Light regulated gene expression-model systems in Arabidopsis and maize; Paramutations and imprinting of genes and genomes.

UNIT IV

Transgene expression and gene silencing mechanisms; Regulatory geneshorizontal and vertical homology; Transformation-regulatory genes as visible markers; Reporter systems to study gene expression; Combinatorial gene control.

UNIT V

Eukaryotic transcriptional control; Translational and post-translational regulation; Signal transduction; Stress-induced gene expression; Gene traps and enhancer traps.

GPB 515 MAINTENANCE BREEDING AND CONCEPTS OF 1+1 VARIETY RELEASE AND SEED PRODUCTION

Theory

UNIT I

Variety Development and Maintenance; Definition- variety, cultivar, extant variety, essentially derived variety, independently derived variety, reference variety, farmers' variety, hybridand population; Variety testing, release and notification systems in India and abroad.

UNIT II

DUS testing- DUS Descriptors for major crops; Genetic purity concept and maintenance breeding.

UNIT III

Factors responsible for genetic deterioration of varieties - safeguards during seed production: Maintenance of varieties in self and cross-pollination crops- isolation distance; Principles of seed production; Methods of nucleus and breeder seed production.

UNIT IV

Generation system of seed multiplication -nucleus, breeders, foundation, certified, -Quality seed production technology of self and cross-pollinated crop varieties viz. cereals & millets (paddy, wheat, sorghum, maize and ragi etc.); Pulses (greengram, rajma, cowpea, pigeonpea, fieldpea, lentil); Oilseeds (groundnut, soybean, sesame, castor, sunflower, linseed, rapeseed and mustard); fibres (cotton, jute) and forages (forage sorghum, teosinte, oats, berseem, lucerne).; Seed certification procedures; Seed laws and plant variety protection regulations in India and international systems.

Practical

Identification of suitable areas/locations for seed production: Ear-to-row method and nucleus seed production - Main characteristics of released and notified varieties, hybrids and parental lines; Identification of important weeds/objectionable weeds; Determination of isolation distance and planting ratios in different crops; Seed production techniques of varieties in different crops; Hybrid seed production technology of important crops.

GPB 516 GERMPLASM COLLECTION, EXCHANGE 2+1AND QUARANTINE

Theory

UNIT I

History and importance of germplasm exploration; Distribution and extent of prevalent genetic diversity; Phyto-geographical regions/ecological zones and associated diversity; Mapping eco-geographic distribution of diversity, threatened habitats, use of flora.

UNIT II

Concept of population and gene pool; Variations in population and their classification; Gene frequencies in populations, rare and common alleles; Gene pool sampling in self and cross pollinated and vegetatively propagated species; Nonselective, random and selective sampling strategies; Strategies and logistics of plant exploration and collection; Coarse and fine grid surveys; Practical problems in plant exploration; Use of in vitro methods in germplasm collection.

UNIT III

Ethnobotanical aspects of PGR; Crop botany, farming systems, collecting wild relatives of crop plants; Collection and preservation of specimens; Importance and use of herbaria and preparation of herbarium specimens.

UNIT IV

Post-exploration handling of germplasm collections; Present status and future strategies in collection of major crops of Indian origin such as rice, maize, sorghum, sesame, Brassica, okra, eggplant, cotton, mango etc; approaches for collection including indigenous knowledge.

UNIT V

History, principles, objectives and importance of plant introduction; Prerequisites, conventions, national and international legislations and policies on germplasm collection and exchange; Documentation and information management; Plant quarantine- introduction, history, principles, objectives and relevance; Regulations and plant quarantine set up in India; Pest risk analysis, pest and pathogen information database; Quarantine in relation to integrated pest management; Economic significance of seed-borne pests (insects, mites, non-insect pests, nematodes, fungi, bacteria, viruses, phytoplasma etc.).

UNIT VI

Detection and identification of pests including use of recent techniques like ELISA, PCR etc., Symptoms of pest damage, salvaging techniques for infested/infected germplasm, post-entry quarantine operation, seed treatment and other prophylactic treatments and facilities; Domestic quarantine; seed certification; International linkages in plant quarantine; weaknesses and future thrust.

UNIT VII

Genetically modified organisms (GMOs) or genetically engineered plants (GEPs), Concepts of biosafety, risk analysis and consequences of spread of GE crops on the environment; Treaties and multilateral agreements governing trans-boundary movement of GEPs or GMOs, Indian regulatory system for biosafety.

Practical

Plant exploration and collection; Techniques of coarse and fine grid surveys; Identification of wild relatives of crop plants-Example of collection, cataloguing and preservation of specimens; Sampling techniques of plant materials; Visiting ports, airports to study the quarantine regulations; Techniques for the detection of insects, mites, nematodes, bacteria, weeds, pathogens and viruses on seed and planting materials and salvaging; Use of visual, qualitative, quantitative, microscopic, molecular and plant growth related techniques(controlled greenhouses/growth chambers, etc); Detection of GMOs and GEPs; Study of post-entry quarantine operation, seed treatment and other prophylactic treatments.

GPB 517 DATA BASE MANAGEMENT, EVALUATION AND UTILIZATION OF PGR 2+1 Theory UNIT I

Statistical techniques in management of germplasm; Core identification, estimation of sample size during plant explorations, impact of sampling on population structure, sequential sampling for viability estimation; Introduction of binomial, normal and negative cumulative normal, use of Probit scales, viability equations and numograms; Estimation of sample size for storage and viability testing.

UNIT II

Germplasm documentation; Basics of computer and operating systems; Database management system, use of statistical software, pictorial and graphical representation of data; introduction to communication network.

UNIT III

Germplasm management system- global scenario; Genetic variation in crop plants and management of germplasm collection, limitations in use of germplasm collections; necessity of germplasm evaluation; Predictive methods for identification of useful germplasm; Characterization of germplasm and evaluation procedures including specific traits; Gene markers and their use in PGR management.

UNIT IV

Management and utilization of germplasm collections; Concept of core collection, molecular markers and their use in characterization; Evaluation and utilization of genetic resources; Pre-breeding/ genetic enhancement, utilizing wild species for crop improvement; Harmonizing agrobiodiversity and agricultural development crop diversification- participatory plant breeding.

Practical

Basics of computer and operating systems; Identification of useful germplasm, evaluation of crop germplasm; Statistical techniques in management of germplasm-estimation of sample size for storage and viability testing; Evaluation procedure and experimental protocols (designs and their analysis), Assessment of genetic diversity; Techniques of Characterization of germplasm; Molecular markers and their use in characterization.